Détails Publication
Derivations and Dimentionally Nilpotent Derivations in Lie Algebras,
Lien de l'article: https://www.researchgate.net/pubucatlon/281487479
Auteur(s): Abdoulaye DEMBEGA , Amidou KONKOBO, MOUSSA OUATTARA
Auteur(s) tagués:
KONKOBO Amidou ;
OUATTARA Moussa
Renseignée par : KONKOBO Amidou
Résumé
In this paper, we first study derivations in non nilpotent Lie triple algebras. We determine the structure of derivation algebra according to whether it admits an idempotent or a pseudo-idempotent. We study the multiplicative structure of non nil dimensionally nilpotent Lie triple algebras. We show that when n=2 p+1 the adapted basis coincides with the canonical basis of the gametic algebra G(2 p+2,2) or this one obviously associated to a pseudo-idempotent and if n=2 p then the algebra is either one of the precedent case or a conservative Bernstein algebra.
Mots-clés
Dimensionally nilpotent Lie triple algebra, pseudo-idempotent, Jordan algebra, ascending basis