Détails Publication
Temperature Effect on Light Concentration Silicon Solar Cell’s Operating Point and Conversion Efficiency,
Auteur(s): Mahamadi Savadogo, Boubacar Soro, Ramatou Konate, Idrissa Sourabié, Martial Zoungrana, Issa Zerbo, Dieudonné Joseph Bathiebo
Renseignée par : ZERBO Issa
Résumé

It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentration solar cells and are used in light concentration photovoltaic systems (CPV). In fact, the significant heating of these solar cells is due to the concentration of the solar flux which arrives on them. Light concentration solar cells appear as solar cells under strong influences of heating and temperature. It is therefore necessary to take into account temperature effect on light concentration solar cells performances in order to obtain realistic results. This one-dimensional study of a crystalline silicon solar cell under light concentration takes into account electrons concentration gradient electric field in the determination of the continuity equation of minority carriers in the base. To determine excess minority carrier’s density, the effects of temperature on the diffusion and mobility of electrons and holes, on the intrinsic concentration of electrons, on carrier’s generation rate as well as on width of band gap have also been taken into account. The results show that an increase of temperature improves diffusion parameters and leads to an increase of the short-circuit photocurrent density. However, an increase of temperature leads to a significant decrease in open-circuit photovoltage, maximum electric power and conversion efficiency. The results also show that the operating point and the maximum power point (MPP) moves to the open circuit when the cell temperature increases.

Mots-clés

Temperature, Conversion Efficiency, Light Concentration, Maximum Power Point, Junction Dynamic Velocity

939
Enseignants
5607
Publications
49
Laboratoires
84
Projets