Nonlinear PAPR reducers, such as clipping and companding techniques, are some simple methods used to reduce the Peak-to-Average Power Ratio (PAPR). In this paper, assuming that the baseband OFDM signal is characterized as a band-limited complex Gaussian process, we investigate the PAPR distribution of an OFDM signal when it is passed through a nonlinear PAPR reducer. The obtained PAPR distribution depends on the nonlinear function which characterizes the PAPR reducer. Later in this paper, we apply the obtained PAPR distribution in the clipping case. The comparisons made between the proposed distribution and that obtained thanks to computer simulations show good agreement.
Orthogonal Frequency Division Multiplexing (OFDM), Peak-to-Average Power Ratio (PAPR), Distribution, Nonlinear PAPR Reducers