Détails Publication
A symmetrized canonical determinant on odd-class pseudodifferential operators,
Auteur(s): Marie Françoise Ouedraogo
Auteur(s) tagués: OUEDRAOGO Marie Françoise
Renseignée par : OUEDRAOGO Marie Françoise
Résumé

Inspired by M. Braverman’s symmetrized determinant, we introduce a symmetrized logarithm logsym for certain elliptic
pseudodifferential operators. The symmetrized logarithm of an operator lies in the odd class whenever the operator does. Using the canonical trace extended to log-polyhomogeneous pseudodifferential operators, we define an associated canonical symmetrized determinant DETsym on odd-class classical elliptic operators in odd dimensions: DETsym = exp ∘ TR ∘ log which provides a canonical description of Braverman’s symmetrized determinant. Using the cyclicity of the canonical trace on odd- class operators, one then easily infers multiplicative properties of this canonical symmetrized determinant.

Mots-clés

pseudodifferentiels operateurs, symmetrized trace, symmetrized determinant, holomorphic familly

939
Enseignants
5607
Publications
49
Laboratoires
84
Projets