The thermal performance of three roofing models: tile, corrugated and earth terrace is numerically analyzed. The mathematical equations which govern the three roofing models are established by the electrical method of analogies. These equations are discretized by an implicit finite difference method and solved by the Gauss-Seidel algorithm. We analyze the influences of geometric parameters (Xlo, Xlarg, α and Ep) on the evolution of the temperatures of the different environments of our three roof models. In particular, we have shown that the effectiveness of a roof in reducing the temperature inside a room is linked to its physical properties. The results obtained that for the same geometric parameters, the earth roof terrace and the earth tile roof compared to the corrugated metal roof improve thermal comfort by lowering the interior temperature of 5˚C and 4.6˚C.
Thermal Performance, Roof