Détails Publication
Effect of Ar Gas Pressure on LSPR Property of Au Nanoparticles: Comparison of Experimental and Theoretical Studies,
Auteur(s): Serap Yigit Gezgin, Abdullah Kepceoglu , Yasemin Gündogdu , Sidiki Zongo , Anna Zawadzka, Hamdi ¸Sükür Kiliç and Bouchta Sahraoui; Nanomaterials
Auteur(s) tagués: ZONGO Sidiki
Renseignée par : ZONGO Sidiki
Résumé

In this study, the thin films were produced by using pulsed laser deposition (PLD) technique from gold (Au) nanoparticles deposited on two kinds of substrates under different argon (Ar) gas pressure. Microscope glass slides and silicon (100) wafers were used as amorphous and crystal substrates. The films were deposited under 2 × 10−3 mbar, 1 × 10−2 mbar, 2 × 10−2 mbar argon (Ar) ambient gas pressure. Effect of the background gas pressure on the plasma plume of the ablated Au nanoparticles was investigated in details. Morphology of Au nanoparticle thin films was investigated by means of atomic force microscopy (AFM) technique. Absorption spectra of Au nanoparticles were examined by using UV-Vis spectrometry. Extinction spectra of Au nanoparticles were calculated by using metallic nano particles boundary element method (MNPBEM) simulation programme. Both experimental spectra and simulation data for Au nanoparticles were obtained and compared in this work. It was concluded that they are also in good agreement with literature data. The measurements and the simulation results showed that localized surface plasmon resonance (LSPR) peaks for Au nanoparticles were located in the near infrared region (NIR) because of the larger size of the disk-like shape of Au nanoparticles, and the near-field coupling between Au nanoparticles. It was demonstrated that as the ambient gas (Ar) pressure was increased, the size and the density of Au nanoparticles on the substrate were decreased and the LSPR peak shifts toward the short wavelength region in the spectrum. This shift has been explained by the changes in the morphology of produced thin films.

Mots-clés

gold nanoparticle, thin film, pulsed laser deposition, surface plasmon resonance simulation

939
Enseignants
5607
Publications
49
Laboratoires
84
Projets